Biofuels International Canada Expo & Conference

Presenter: Rocky C. Costello, P.E.

R.C. Costello & Assoc., Inc. www.rccostello.com

September 28 & 29, 2010

The Importance of Biodiesel Plant Design

Latest Technological Developments

- Transesterification
- Esterification
- Newer dual reaction plants with both Transesterification and Esterification

Examining Energy Maximization & Cost-Effectiveness

Improving Yields

***** Safety Considerations

Quick Chemistry Review

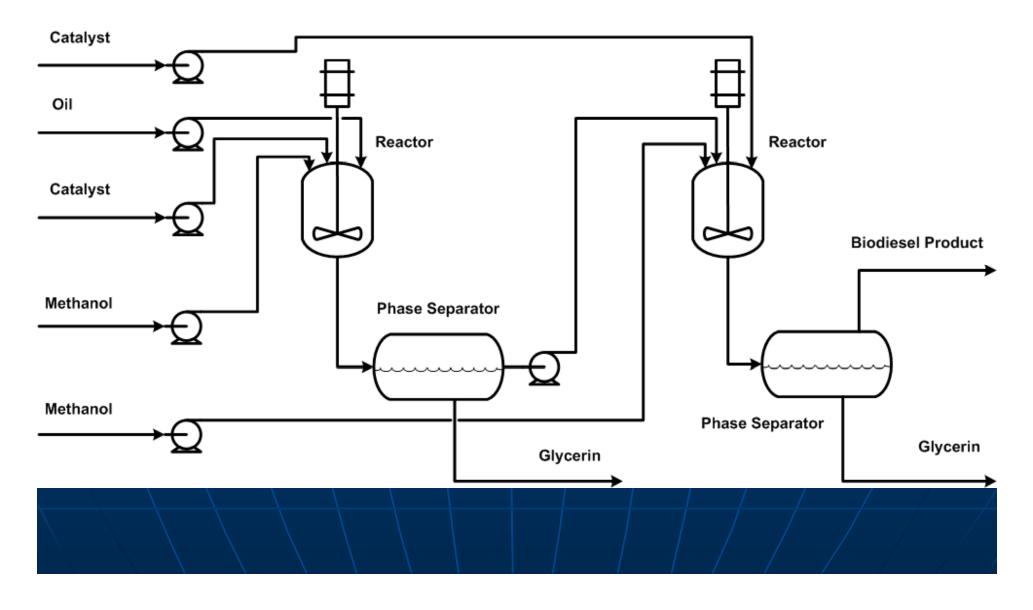
Transesterification

1 Triglycerides + 3 Methanol $\leftarrow \rightarrow$ 3 Biodiesel + 1 Glycerin

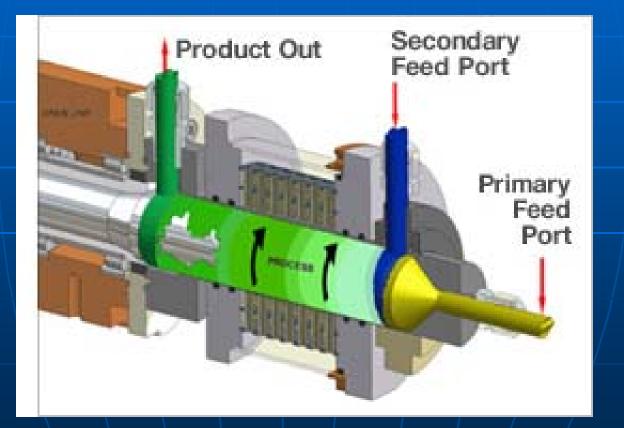
Esterification 1 FFA + 1 Methanol $\leftarrow \rightarrow$ 1 Biodiesel + 1 Water

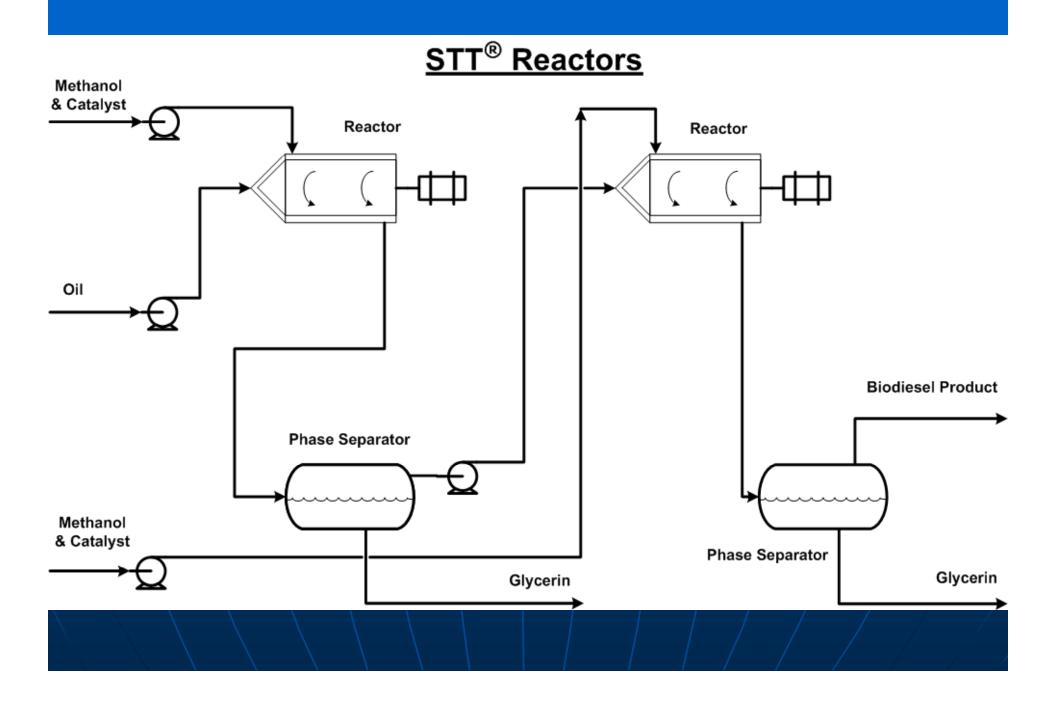
Transesterification

Traditional Continuous Stirred
 Tank Reactors


Spinning Tube in a Tube Reactor

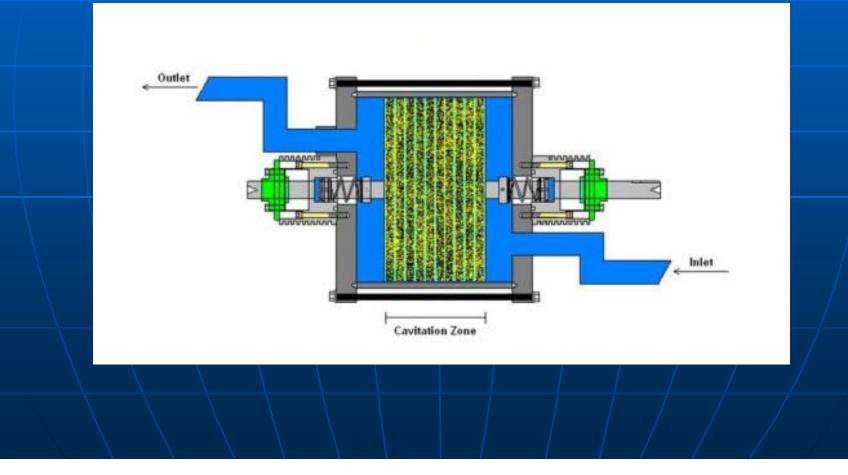
Shockwave Power[®] Reactors


Continuous Stirred Tank Reactors

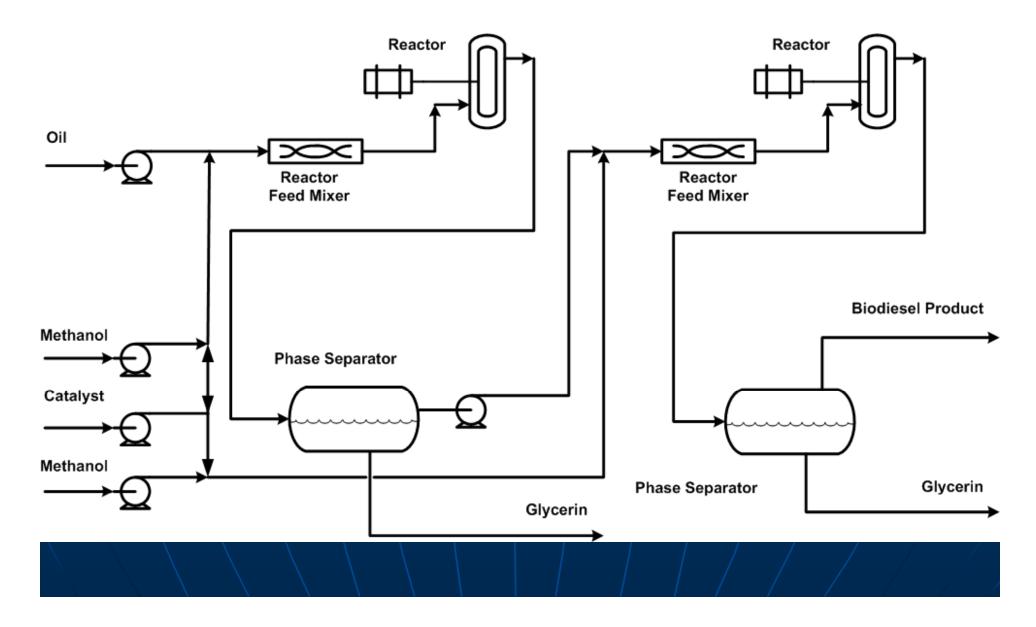

Continuous Stirred Tank Reactors

Spinning Tube in a Tube Reactor

Mixing achieved by shear



Shockwave Power Reactors



Mixing achieved by controlled cavitation

Shockwave Power Reactors

ShockWave Power[®] Reactors

Summarizing

CSTRs - Residence time 20 minutes
 mixing by agitation

 ShockWave Power - Reactor Residence time 3.5 seconds - mixing by controlled cavitation

•STT - - Reactor Residence time 0.5 seconds – mixing by shear

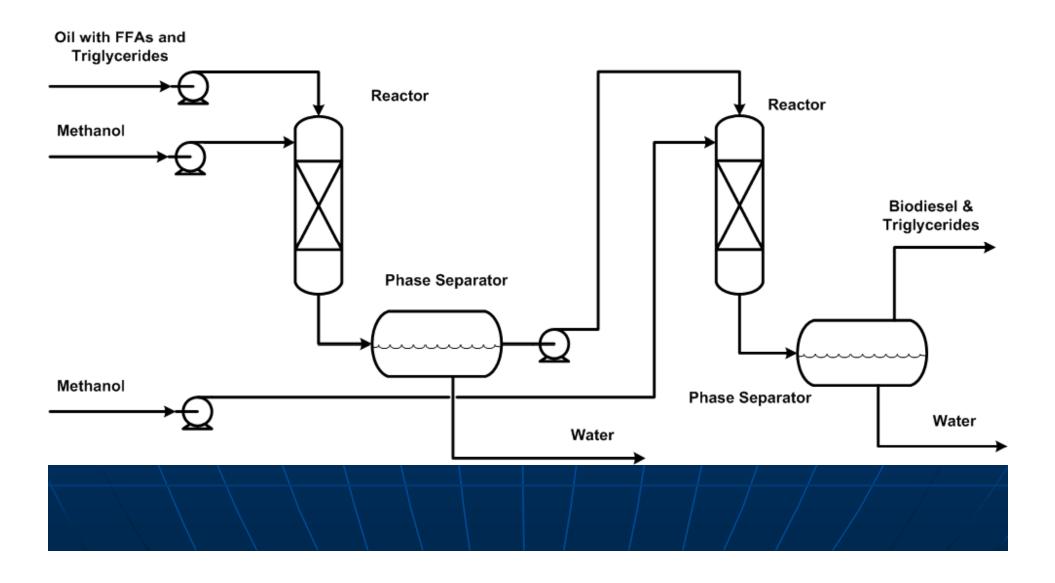
Criteria for These Latest Technological Developments

Low Pressure Process
Low to Medium Temperature Process
Performs both Esterification and Transesterification together
No sodium methylate is used that could form soap
No sulfuric acid that requires special materials or may form stable emulsions **Traditional Esterification**

Typically done with sulfuric acid

High temperature and pressure

 Corrosion resistant piping and vessels that may include plastic lined pipe and Hastelloy C vessels.


Solid Catalyst Esterification

Ion exchange beads with the -SO₃H Group

Two columns or packed beds in series

Placed in front of a transesterification process

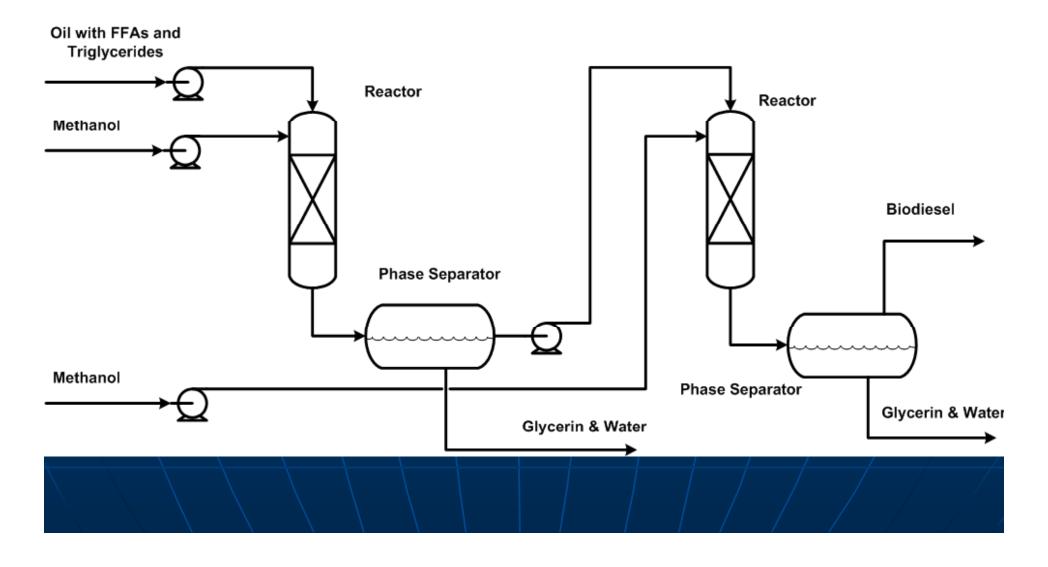
Packed Tower Esterification Reactors

Newer Dual Reaction Technologies with Both Transesterification and Esterification

NextCAT, Inc.

Transbiodiesel, Ltd.

Enhanced Biofuels, LLC

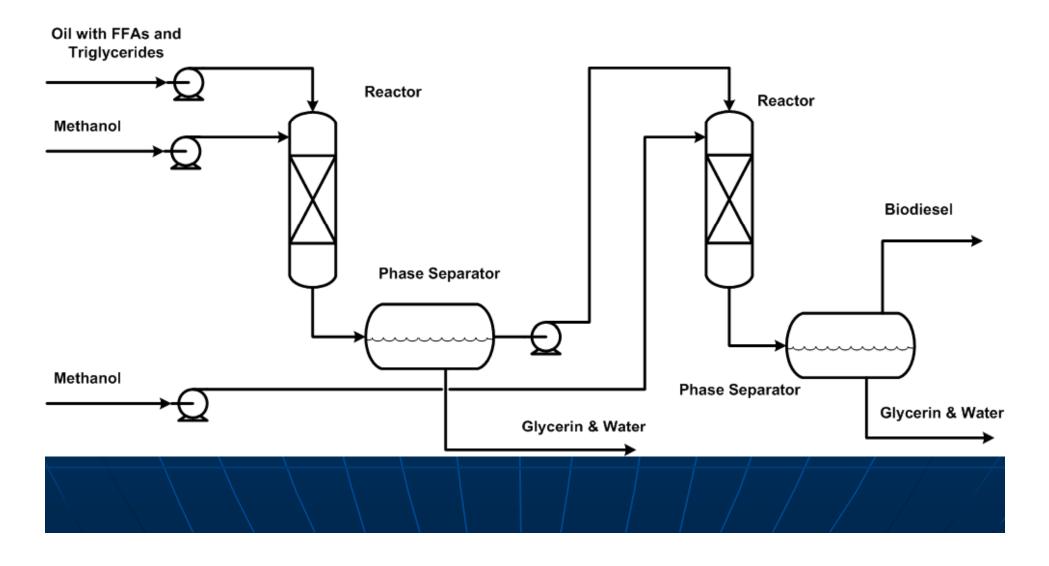

NextCAT, Inc.

 A dual catalyst packed bed reactor that performs both esterification and transesterification developed at Wayne State University in Detroit.

 Shows a very sharp separation between biodiesel and glycerin.

No soap formation

Packed Tower Esterification & Tranesterification Reactors


Transbiodiesel, Ltd.

•A dual lipase enzyme based packed bed reactor that performs both esterification and transesterification developed in Israel.

 Lipase enzyme is tethered to ion exchange beads. Most likely two modified lipases one for esterification and another for transesterification

No soap formation

Packed Tower Esterification & Tranesterification Reactors

Enhanced Biofuels, LLC

<u>Next Generation</u> (HS Reactor System[™])

What we do

Process and upgrade high acidity feedstock Implementation includes add-ons and retrofits

How we do it Reactor design, process intensification, temperature, pressure and catalysts

Pilot Units 3,000 GPY and a 250,000 GPY

Examining Energy Maximization & Cost-Effectiveness

 Single largest operating cost has traditionally been feed stock.

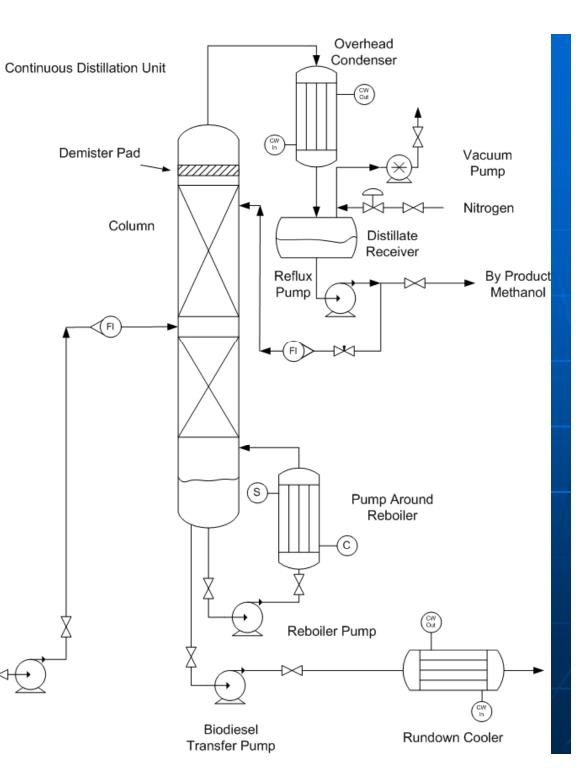
•This will change as low cost feedstocks become available especially nonedible plant oils such as jatropha, camelina, algae oil and others.

• Energy consumption per lb gallon of biodiesel will become important and calculated on an ongoing basis.

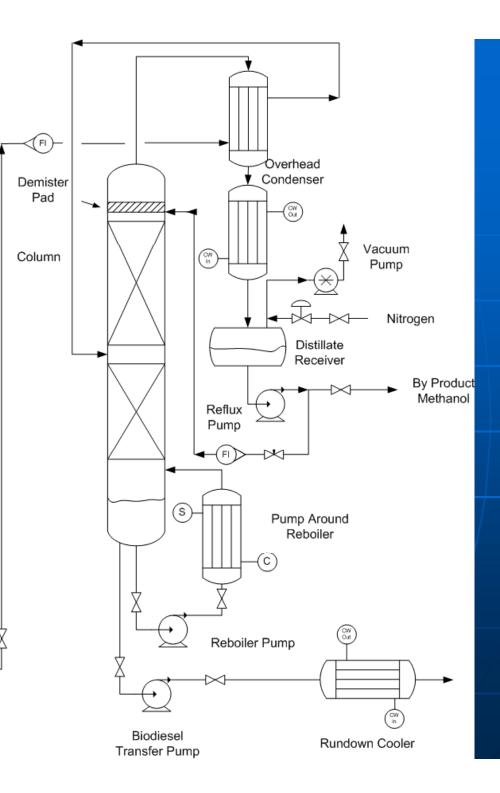
Energy Requirements for a Biodiesel Plant Basis

- Plant has degumming
- Dual solid catalyst esterification reactors in Series
- Dual Shockwave [®] Reactors in Series
- Three distillation Columns
 - A column to strip methanol from Biodiesel
 - A column to strip methanol from glycerin
 - A column to dehydrate both methanol streams above and the methanol/ water from esterification

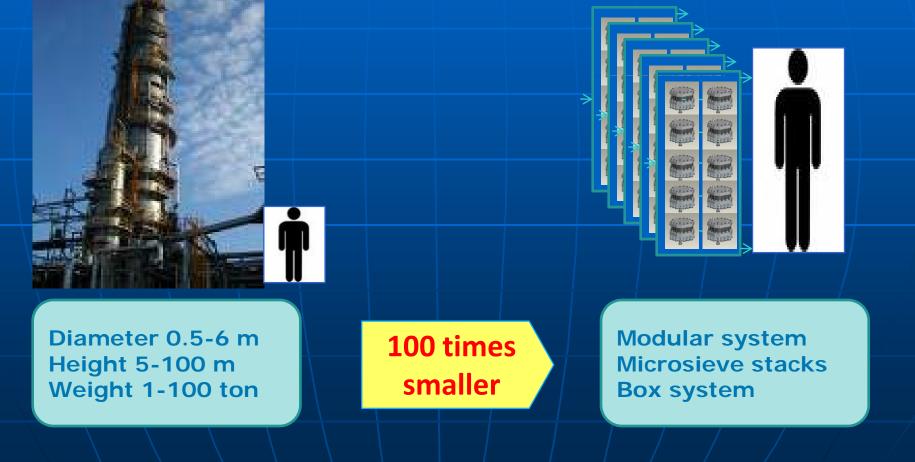
Energy Requirements for a 20 MGY Biodiesel Plant


		Plant Size: 20,000,000 gallons per year							
Unit	Motor	Steam - 150#	Steam - 30#	Condensate	Tower Water	Chilled Water	Chilled Water	Nitrogen	
	hp	lbs/hr	lbs/hr	gpm	gpm	mm btu/hr	gpm	Normal SCFM	Maximum SCFM
Connected loads									
100 - Degumming	93	1,026	0	2	113	0.0	5	0	0
200 - Esterification	52	1,804	0	4	424	0	0	0	0
300 - Transesterification	<u>363</u>	<u>8,194</u>	<u>132</u>	<u>16</u>	<u>274</u>	<u>5</u>	<u>616</u>	<u>0</u>	<u>0</u>
TOTAL	508	11,024	132	22	812	5	621	0	0
Operating loads									
100 - Degumming	70	1,026	0	2	113	0.0	5	0	0
200 - Esterification	26	1,804	0	4	424	0	0	0	0
300 - Transesterification	<u>323</u>	<u>7,264</u>	<u>132</u>	<u>15</u>	<u>274</u>	<u>5</u>	<u>616</u>	<u>0</u>	<u>0</u>
TOTAL	418	10,094	132	20	812	5	621	0	0

Energy Requirements for a 20 MGY Biodiesel Plant (Transesterification)


	Tag	Service	PID	Motor	Steam - 150#	Steam - 30#	Condensate	Tower Water	Chilled Water	Chilled Water	Nitro	Nitrogen	
				hp	lbs/hr	lbs/hr	gpm	gpm	mm btu/hr	gpm	Normal SCFM	Maximum SCFM	
Colu	mns												
	C-301	BIODIESEL DISTILLATION COLUMN	MFD-341										
	C-302	GLYCEROL DISTILLATION COLUMN	MFD-351			150							
	C-303	METHANOL TOWER	MFD-356										
	C-304	VENT SCRUBBER	MFD-370										
Exch	angers												
	E-303	OIL DRYER HEATER	MFD-300		2,325		5						
	E-317	OIL FEED DRUM HEATER	MFD-300			275							
	E-321	OIL DRYING CONDENSER	MFD-300					13					
	E-301	REACTOR OIL HEATER	MFD-315		2,325		5						
	E-302	REACTOR METHANOL HEATER	MFD-315		745		1						
	E-320	1ST STAGE COOLER	MFD-320					167					
	E-312	2ND STAGE REACTOR HEATER	MFD-325		355		1						
	E-304	REACTOR PRODUCT COOLER	MFD-335					179					
	E-307	BIODIESEL FEED/BOTTOMS EXCHANGER	MFD-341					202					
	E-308	BIODIESEL PRODUCT RUNDOWN COOLER	MFD-341		2 700		c	292					
	E-305	BIODIESEL TOWER REBOILER	MFD-342		2,790		6						
	E-306	BIODIESEL TOWER CONDENSER	MFD-343						1.20	160			
	E-310	GLYCEROL FEED/BOTTOMS EXCHANGER	MFD-351										
	E-316	GLYCEROL PRODUCT RUNDOWN COOLER	MFD-351					24					
	E-309	GLYCEROL TOWER REBOILER	MFD-352		5,120		10						
	E-311	GLYCEROL TOWER CONDENSER	MFD-353						4.57	600			
	E-313	METHANOL TOWER REBOILER	MFD-357		6,825		14						
	E-319	WASTE WATER COOLER	MFD-357					11					
	E-314	METHANOL TOWER CONDENSER	MFD-358						5.86	780			
	E-315	SEAL WATER COOLER (BY VENDOR)	MFD-370										
Tank													
	T-303	MeOH DAY TANK	MFD-305										
	T-304	CATALYST DAY TANK	MFD-310										
	Jum Pur		NAED 270	_									
	CP-301	DISTILLATION VACUUM PUMP	MFD-370	5									

Energy Requirements for a 20 MGY Biodiesel Plant Transesterification has the highest energy requirements The three distillation columns are the biggest energy users within tranesterification What can be done?


Energy Conservation Schemes Around Distillation

The iPod for distillation

Today's Distillation

fluXXion HEC: High Efficiency Contactor

Fast, Flexible and Safe

Today's Distillation

High energy loss

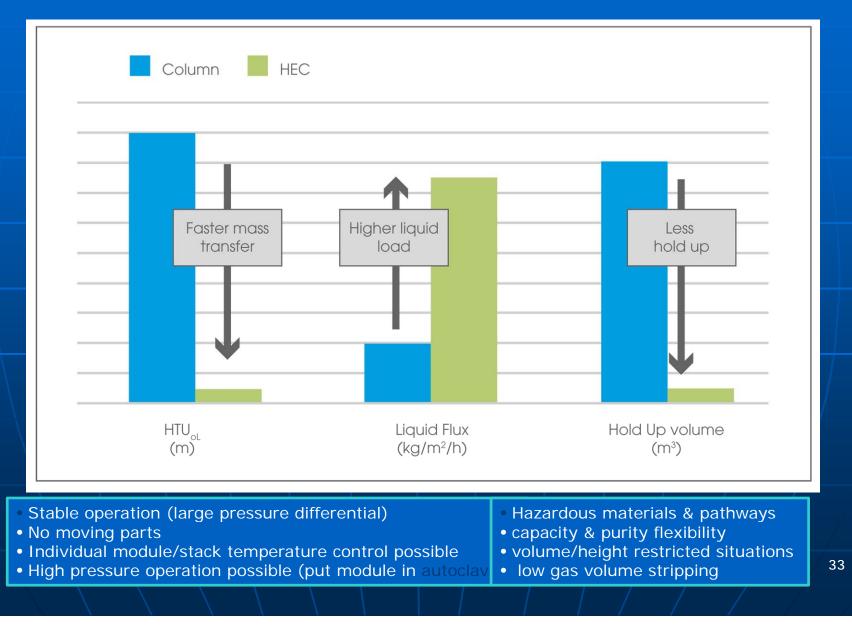
Separation inside column, heat recovery outside column

Inflexible system

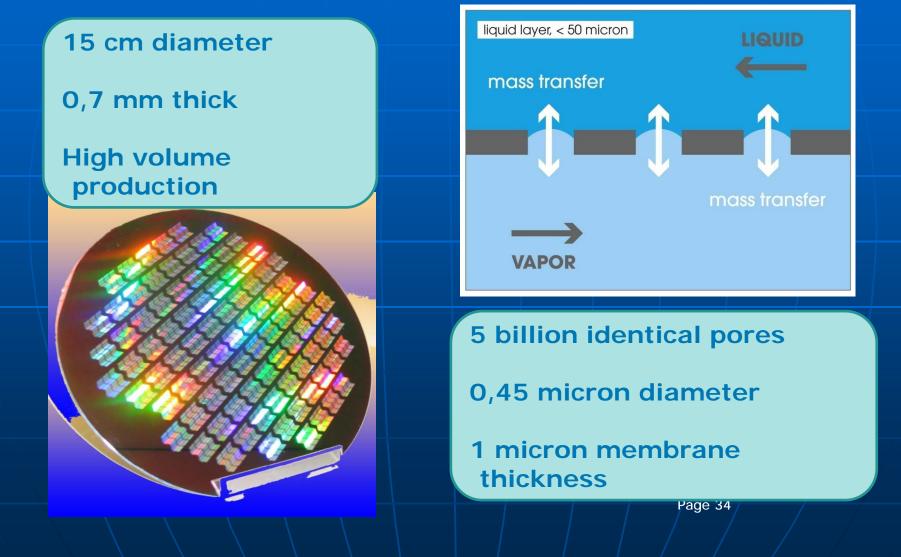
Large dimensions

High installation cost

Well proven system

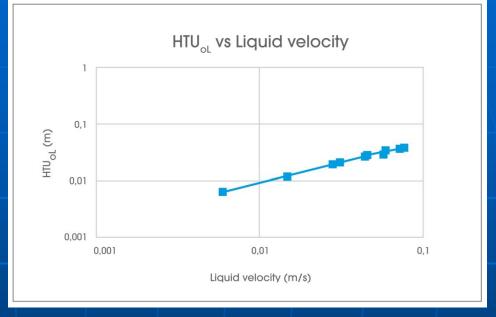

Integrated heat and mass transfer 100-1000x faster 20-40% energy savings

High flexibility Capacity in operation Modularity Purity Products


Small dimensions Easy to place anywhere

Enhanced safety small liquid hold up

Small, Flexible, Safe



Proven Science UNIQUE MICROSIEVE TECHNOLOGY

PROOF: ultra short HTU_{OL}

Stripping MTBE from water by nitrogen at ambient conditions was used as a test system for performance evaluation purposes. Inlet concentration of MTBE, different flow rates for liquid and gas were varied in a wide range. The best efficiency was achieved in all cases at lowest liquid flow rate, and tended to decrease progressively with increasing liquid flow rate, i.e. decreasing residence time. Gas flow rate exhibited practically no effect on separation, indicating that this system also can be considered as fully controlled by liquid side mass transfer resistance. Since the value of the overall liquid side based volumetric mass transfer coefficient was almost constant, the overall height of liquid side transfer unit (HTUoL) increased nearly proportionally and ranged 0.5-4 cm (!). The corresponding heights equivalent to a theoretical plate (HETP values) were 2 to 10 cm (!). These numbers indicate a high mass transfer efficiency, an order of magnitude above that experienced with common types and sizes of corrugated sheet structured packing in similar applications.

What Else Can Be Done?

- If your plant is large enough consider an anaerobic digester using glycerin to produce biogas.
- Remove the water and hydrogen sulfide from the biogas.

Feed the low Btu gas (650-750 BTUs/ SCF) to the boilers that produce steam for the plant and especially the distillation columns.

Improving Yields in Tranesterification

STT[®] Reactor 99.7% conversion in one reactor

Shockwave [®] Power Reactor 99.99% conversion in two (2) reactors in series

 Better than the continuous stirred tank reactors CSTRs with (2) reactors in series.

Advantages of Improving Yields

More biodiesel produced per lb of incoming oil

Less Soap produced because of low residence times

Sharper phase separation since unreacted mono and diglycerides are emulsifiers. Now they don't exist.

Disadvantages of Improving Yields with Extra Methanol

 Use more methanol upfront to improve conversion but then you will have higher distillation costs.

Typically 100% excess of theoretical methanol is used. That is 6 moles of methanol per mole of triglyceride.

Improving Yields in Two Column Systems

Add a third reactor but this is costly

If we have 99% conversion per pass

With 15% free fatty acids in an esterification system only

- After the first reactor 15%* (1-.9) = 1.5%
- After a second reactor 1.5 %* (1-.9) = 0.15%
- After a third reactor 0.15 %* (1-.9) = 0.015%

Safety Considerations

•During the years 2007 to 2009 there were 26 fires and or explosions in the US from methanol vapors in biodiesel plants.

•During this same period there were two (2) deaths

Three Explosions (1 of 3)

One consisted of a man welding on top of tank partially filled with glycerin and methanol. The methanol vapors in the top of the tank ignited causing a manway cover to hit the man and killing him.

The tank should have been emptied and dried and purged with air. An LFL meter would determine if a flammable mixture existed or not existed prior to welding.

Three Explosions (2 of 3)

Another consisted of the ignition of a methanol vapor cloud by a genie garage door opener.

An operator opened a hot vessel filled with hot glycerin and methanol vapors to check the level in the vessel.

The vapors poured into the room.

Someone opened the garage door to vent the vapors

The motor on the door opener ignited the vapors.

Three Explosions (3 of 3)

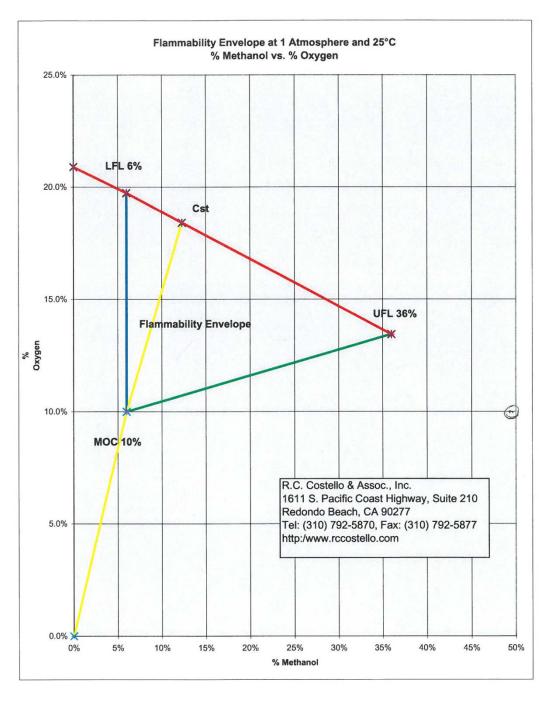
The American Biofuels plant in Bakersfield, Calif., burned to the ground when a spill from a methanol-filled transport tote was ignited.

Why?

 Unsophisticated builders try to save money with lower cost plants. They have no prior experience in the chemical industry. Do not buy on price.

Unsophisticated buyers.

 These lower cost plants have low on stream factor (Low reliability). I.e. installed spare pumps.


These low cost plants are not safe.

What have I observed?

Non explosion proof motors Vessels operating at 50 psig without an ASME code stamp. Non explosion proof wiring Non explosion proof instrumentation No Hazards Analysis ever performed!!! (If you have 10,000 lbs on methanol on hand OSHA requires a Hazards Analysis)

What have I observed?

 Stripping methanol out of Biodiesel with air. This creates an explosive flammable mixture. All we need now is an ignition source. Such as a an electrical spark. This is a short cut approach when no knowledge of vacuum distillation exists.

Copyright R.C. Costello & Assoc., Inc., 2006

Was your plant designed by licensed professional engineers?

Is your plant design compliant with the latest version of the National Electric Code and all of the National Fire Protection Association codes for flammable liquids and vapors?

Does your plant designer understand why you must use explosion-proof motors, explosion-proof wiring and explosionproof field instruments when using flammable liquids such as methanol?

Is your lighting in the building explosion-proof, or could it be an ignition source?

Is your plant design compliant with the state pressure vessel code for all vessels operating at pressures above 14.9 pounds per square inch gauge?

Are you, as the owner, compliant with local construction codes?

Does your city require civil/structural drawings and load calculations to be prepared by a licensed civil engineer, with final approval by the city prior to starting construction?

Does your city require electrical drawings and electrical load calculations to be prepared by a licensed electrical engineer, with final approval by the city prior to starting construction?

Have you performed a Hazard and Operability (HAZOP) study prior to beginning construction, as required by the Occupational Safety and Health Administration (OSHA) and most likely your state equivalent?

Have you obtained all necessary air permits?

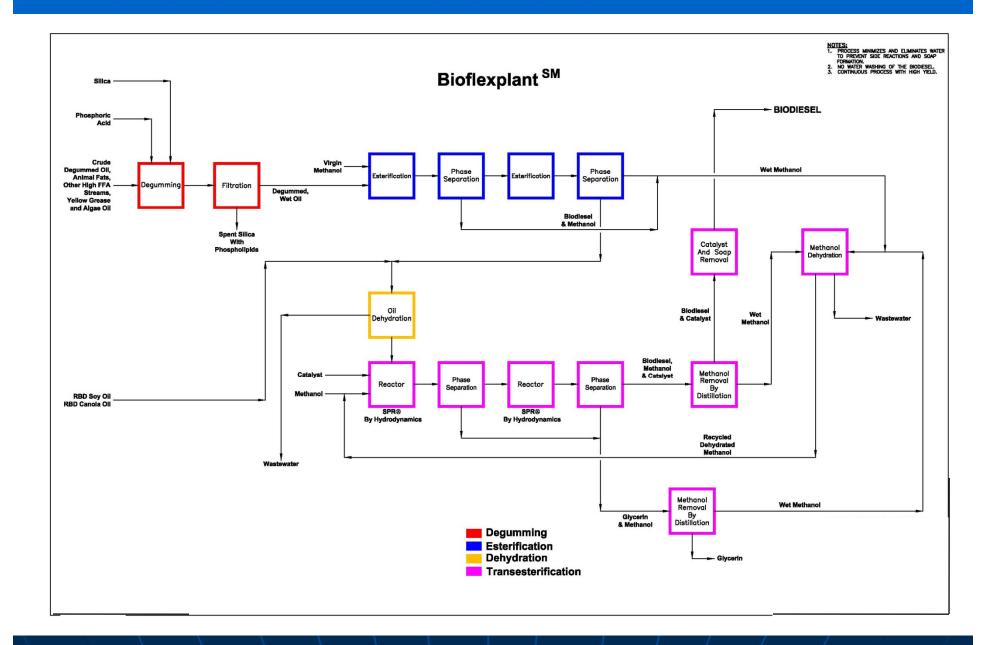
Have you obtained all necessary water permits to discharge water, which would include either a Publicly Owned Treatment Works (POTW) permit or a National Pollution Discharge Elimination System (NPDES) permit to discharge to a local body of water?

Are you meeting all of OSHA's federal industrial hygiene requirements and your state's industrial hygiene requirements regarding worker exposure to methanol vapors?

Does your plant have vessel entry procedures?

Does your plant have lock-out/tag-out procedures?

Do you have written start-up and shutdown procedures?


Do you have written start-up and shutdown procedures?

Are pressure vessels properly protected by safety relief valves? Do these relief valves discharge to a safe location?

Are storage tanks designed and laid out in accordance with American Petroleum Institute guidelines? Are the tanks located within containment berms designed for the event of a tank failure?

Do you have written operating procedures that include instructions for fire and explosion handling?

Source: Rocky C. Costello, R.C. Costello & Assoc., Inc.

Summarizing

- Smaller intensified reactors exist now for Transesterification.
- Packed bed reactors exist for Esterification
- Dual process packed bed reactors for Esterification & Transesterification are on the way.
- Energy usage will become more important.
- Plants that can handle multiple feedstocks will survive.
- Good safety is good business.